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Objectives

• Describe the effects of hemolysis on T cells from patients with sickle 

cell disease on transfusion therapy

• Discuss innate immune response to hemolysis in transfused patients 

with sickle cell disease 

• Describe the effects of transfusions on circulating patrolling 

monocytes: protection against vaso-occlusion in sickle cell disease



• An estimated 60-80% will receive at least one 

transfusion by the age of 20

• Blood transfusion is recommended therapy for SCD 

complications: stroke, acute chest syndrome, multi-organ 

failure syndrome and severe anemia and...

SCD-Transfusion therapy



Transfusion Complications in SCD

• Alloimmunization 

• Life-threatening transfusion reactions 

• Difficulty obtaining compatible units, resulting in potentially critical 

delays in blood transfusion

• Higher alloimmunization rates  

• Major reason: Differences in red blood cell antigen expression 

frequencies between the mostly Caucasian donor base and the mostly 

African-American SCD patients



Antigen-matching for Transfusions in SCD

• Majority of patients do not make antibodies therefore prophylactic 

matching is costly

• Supply logistics:  RBCs of unusual phenotype are a limited resource and 

should potentially be reserved for patients who require these antigenic 

specifications

• Identify immune responsiveness of the patient, to predict in advance 

which patients will make antibodies 



Hemolysis in SCD

• Intravascular hemolysis in SCD

• Heme scavenging/removal system 

(hemopexin and haptoglobin) is overwhelmed

• Anti-inflammatory heme oxygenase 1 

(HO-1) breaks down heme; 

upregulated in SCD

Hypothesis: Ability of the immune cells to handle  ongoing hemolysis is 

critical in  alloimmunization

???Tolerance



T cells critical for B cell help/Ab production

Does heme/hemin alter T cell 

proliferation/polarization?
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Heme response in Healthy Donors
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Analysis of T cell Priming by Dendritic Cells (DCs)

PBMCs

Monocytes

5 days

IL4/GM-CSF

Immature DC

2 days

± Hemin

TLR ligands

Mature DC

+

Allogeneic

Naïve T cell

10 days

IFNg

TLR ligands for DC maturation: 

-LPS (TLR-4)

-LPS+IFN-g (TLR-4/Stat-1)

-R848 (TLR7/8)

0 hemin 5mM hemin 20mM hemin

IFN-g

C
D

4

CFSE

C
D

4

CD4+CFSElow CD4+IFN-g+ CD4+IFN-g+ CD4+IFN-g+

23.8% 20.3% 14%

Godefroy  et al, Hematologica 2016



Impaired Inhibition of Th1 Priming in Response to Heme in 

Alloimmunized SCD Patients
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Mechanism of Altered Innate Immune 

Reactivity by Free Heme



Detection of DC Maturation
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Impaired Downregulation of CD83 Maturation Marker on DCs in 

Alloimmunized Patients in Response to Heme
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Pro-oxidant and Pro-inflammatory Effects of 

Cell Free Heme in Endothelial Cells

John D. Belcher et al. 

Blood 2014;123:377-390
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Heme-driven NF-kB Expression in DCs 
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• Phagocytose cellular debris derived from 
damaged endothelial cells 

• Control endothelial damage in atherosclerosis 
models and clear vascular amyloid beta in 
Alzheimer’s disease

• SCD express high levels of HO-1 in patrolling 
monocytes: control T cell anti-inflammatory 
profile in SCD under hemolytic conditions

(Zhong… Yazdanbakhsh, (2014) JI 193(1):102-10)

Hypothesis: HO-1 expressing patrolling 

monocytes clear heme damaged 

endothelial cells and sickle RBC attached to ECs 
in SCD, dampening inflammationCarlin et al. (2013) Cell 153(2): 362-375.

Quintar et al. (2017) Circ Res 120(11):1789-1799.

Michaud et al. (2013) Cell Rep 5(3):646-653.

Zhong …Yazdanbakhsh. (2014). J Immunol 193(1):102-110.

Patrolling Monocytes



Protection from plasma cell-free hemoglobin and heme in sickle cell disease 

Victor R. Gordeuk Blood 2018;131:1503-1505



HO-1hi

HO-1 expressing Patrolling Monocyte Characterization 

in SCD
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Phagocytosed RBCs in Circulating SCD PMos

H
D

S
t
e

a
d

y

s
t
a

t
e

 S
C

D

A
c

u
t
e

 

c
r

is
is

 S
C

D

H
D

S
t
e

a
d

y

s
t
a

t
e

 S
C

D

A
c

u
t
e

 

c
r

is
is

 S
C

D

0

5

1 0

1 5

2 0

%
 G

P
A

+
 m

o
n

o
c

y
t
e

P M o C M o

***

**
**

H
D

S
t
e

a
d

y

s
t
a

t
e

 S
C

D

A
c

u
t
e

 

c
r

is
is

 S
C

D

0

5

1 0

1 5

2 0

%
 P

M
o

 i
n

 m
o

n
o

c
y

te

*
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increased during crisis, 
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Manipulation of PMo Numbers Affects Sickle RBC Stasis In Vivo
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Can transfusions help PMo survival?
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