

Preventing Alloimmunization using a New Model for Matching Extensively Typed Red Blood Cells

P-173

Merel L Wemelsfelder Transfusion Technology Assessment group, Donor Medicine Research department, Sanquin Research, Amsterdam, The Netherlands

Ronald HG van de Weem¹, Jessie S Luken², Masja de Haas², René WLM Niessen³, C Ellen van der Schoot⁴, Han Hoogeveen⁵, Mart P Janssen¹.

¹Donor Medicine Research, Sanquin Research, ²Sanquin Diagnostics, ³OLVG Laboratory BV, ⁴Sanquin Research, Amsterdam, ⁵Utrecht University, Utrecht, Netherlands

Conflict of interest

No conflict of interest to declare

Introduction

Red blood cells (RBC): most common transfused blood product.

transfusion with phenotype-incompatible RBC units

 \rightarrow production of alloantibodies by the patient's immune system (alloimmunization)

 \rightarrow hemolytic transfusion reaction on future transfusions

Alloimmunization can be prevented by transfusing fully compatible RBC units.

Genotyping \rightarrow extensive typing

- donors: increase in the availability of typed RBCs
- patients: preventive matching on minor antigens

large-scale extensive matching \rightarrow reducing alloimmunization

number of possible phenotype profiles increases exponentially with the number of antigens \rightarrow need for **software-driven solution** to select the best RBC unit for a given patient

aim: Minimize the expected number of alloimmunizations over all transfused patients by providing them with suitable RBC units, without introducing any additional shortages or outdating of RBCs.

🍡 Sanquin

Methods

novel flexible **issuing strategy** for assigning RBC units to patients – penalty-based approach for preventing mismatches – **penalty** determined by antigen **immunogenicity**²

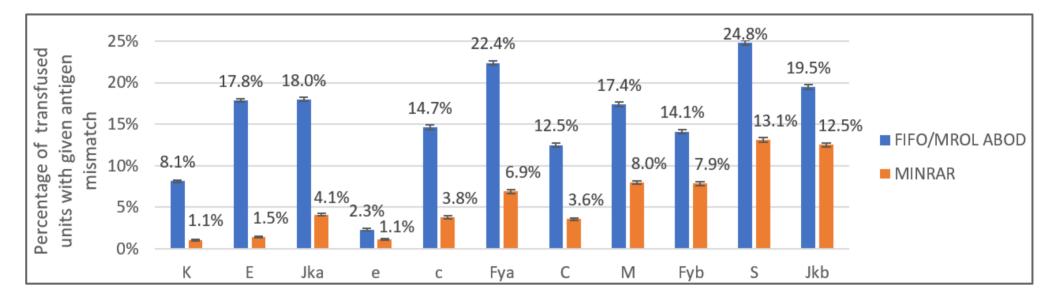
> – 11 minor antigens: representing 95% of clinically relevant alloantibodies resulting from alloimmunization

virtual RBC inventory: direct patient requests, resupplied with random units

baseline for comparison: FIFO/MROL for ABO, RhD-matching (ABOD)¹: (comparable to current strategy in the Netherlands)

level of antigen exposure not considered

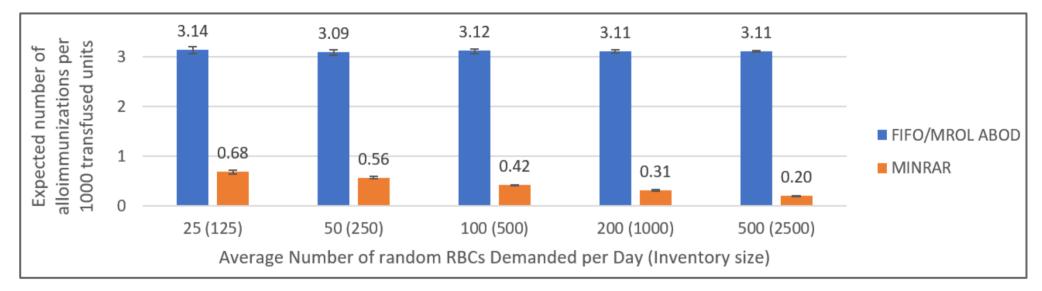
 \rightarrow proportion of patients without exposure is maximized.


integer linear programming (ILP) model: **MINRAR** (MINimize Relative Alloimmunization Risks) iterative solving \rightarrow decisions affect matching potential for the next day(s)

² Evers D, Middelburg RA, de Haas M, et al. Red-blood-cell alloimmunisation in relation to antigens' exposure and their immunogenicity: a cohort study. Lancet Haematol. 2016;3(6):e284-e292.

Number of alloimmunizations per 1000 patients exposed to 2 mismatching units	
С	2.1
с	4.3
Е	14.6
е	5.1
К	23.4
Fy ^a	2.7
Fy ^b	0.8
Jk ^a	5.1
Jkb	0.2
М	1.8

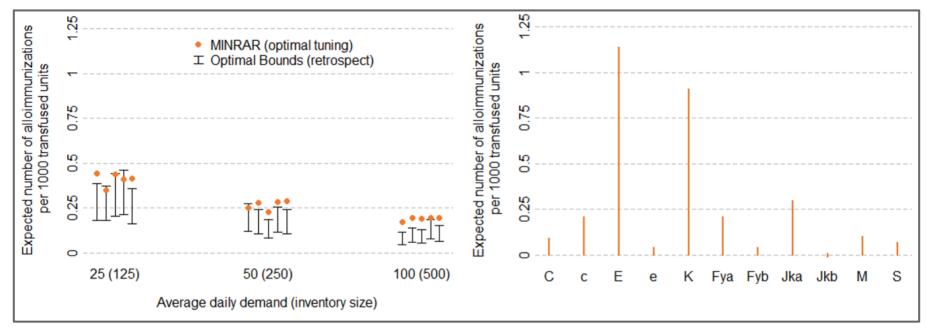
¹ Van Sambeeck JHJ, Van Brummelen SPJ, Van Dijk NM, Janssen M. Blood group specific issuing policies to improve inventory management of red blood cells. Eur J Oper Res. 2021.



average of one-year simulations

- Inventory: 500 units
- average daily demand: 100 units

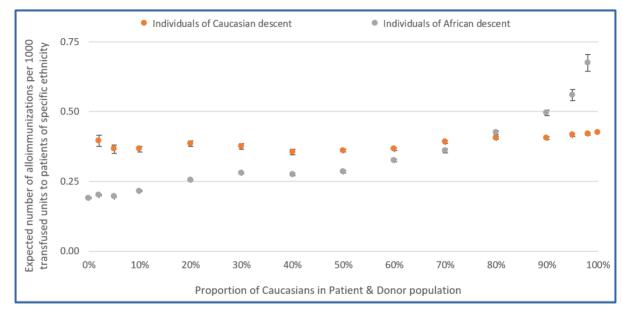
 \rightarrow reduction in mismatches for every antigen.


 \rightarrow substantial **reduction** in number of **alloimmunizations**:

- reduced by 78%^{*} when matched locally

- reduced by 94%** when matched centrally

without increase in shortages or outdating concentrated on the more immunogenic antigens such as K, E and Jk^a


 \approx

What would have been the best possible allocation in retrospect?

prevented alloimmunization with retrospective issuing alloimmunization induced by ignoring antigens M, S or C

 \rightarrow MINRAR strategy provides a near-optimal solution.

How is matching affected by heterogeneity of donor and patient populations?

- \rightarrow alloimmunization risk for individuals of African descent
 - increases up to 60% if population is 98% Caucasian
 - increases only 4.9% if population is 80% Caucasian, 20% African descent

Conclusion

Compatible matching on all clinically relevant antigens can **reduce** the risk of **alloimmunization** by almost **94%** compared to matching on antigens A, B and RhD alone.

Without any increase in outdating or shortages!

practical feasibility of extended matching \rightarrow improved safety of future RBC transfusions

continuing research

- financial viability of large-scale extensive matching
- operational and organizational challenges resulting from changes in matching policy