

Mathematical optimization for alloimmunization prevention

<u>Joost van Sambeeck^{1,2,3}</u>, Ellen van der Schoot^{4,5}, Nico van Dijk^{2,3}, Henk Schonewille⁴, Mart Janssen¹

¹ Transfusion Technology Assessment, Sanquin Research, Amsterdam, The Netherlands

² Center for Healthcare Operations Improvement & Research, University of Twente, Enschede, The Netherlands

³ Stochastic Operations Research, University of Twente, Enschede, The Netherlands

- ⁴ Experimental Immunohematology, Sanquin Research, Amsterdam, The Netherlands
- ⁵ Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands

Blood and Beyond

20 November, 2018 | 1

Introduction

- Why do we want to issue extensively typed RBC units?
 - Reduces (eliminates) transfusion-induced allo-antibodies
 - Hemolytic disease of the fetus or newborn
 - Problems during subsequent blood transfusions
- Preventive matching strategies are only applied for specific groups of transfusion recipients
- The ambition is to provide extensively matched RBC units to all transfusion recipients
- This is though to be impossible in practice, however its feasibility has never been determined!

Goal

Investigate to which extend transfusion-induced alloimmunization can be prevented by matching for different

- inventory sizes (n = 60, 120, 250, 1000)
- number of units requested (k = 1, 2, 3, 5, 10)

when both the **donor and transfusion recipient population are fully typed**

- 1. Amount of antibodies formed against specific antigens
- 2. Likelihood that RBC units can be issued from a finite inventory

antibody	n (%)	antibody	n (%)
anti-E	177 (37%)	anti-S	8 (2%)
anti-K	122 (26%)	anti-Jk ^b	7 (1%)
anti-Jk ^a	50 (11%)	anti-Fy ^b	5 (1%)
anti-c	37 (8%)	anti-e	4 (1%)
anti-Fy ^a	24 (5%)	anti-s	0 (0%)
anti-C	22 (5%)		
anti-M	18 (4%)	All antibodies	474 (100%)

Evers et al. (2016) Lancet Haematology

Two factors

- 1. Amount of antibodies formed against specific antigens
- 2. Likelihood that RBC units can be issued from a finite inventory

Reid et al. (2012) Academic Press

antigens included

5

10

Two factors

- 1. Amount of antibodies formed against specific antigens
- 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

Based on

Sanquin Blood Supply

- 1. Amount of antibodies formed
- 2. Likelihood that RBC units can be issued from inventory

UNIVERSITY OF TWENTE.

- Based on
 - 1. Amount of antibodies formed
 - 2. Likelihood that RBC units can be issued from inventory

Mathematical optimization model

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg

A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Issuing policy

Requested: O, E-neg, K-neg, Fy^a-neg, s-neg

A B D E K Jk^a c Fy^a C M S Jk^b Fy^b e s

Proportion of alloimmunization prevented

Small hospital (n = 60)

Average number of antigens negative

• Individual is on average negative for 5.51 / 16 antigens

Conclusions

- If all donors and transfusion recipients are fully typed, extensive preventive matching for all transfusion recipients is feasible
- Alloimmunization prevented:

		number of units requested (k)							
		1 2 3							
ventory size (<i>n</i>)	60	64%	46%	32%					
	120	77%	64%	53%					
	250	88%	79%	71%					
<u> </u>	1000	97%	93%	90%					

• Optimal order: (transfusion recipients typed for a limited number of antigens)

*	1	2	3	4	5	6	7	8	9	10	11	12
ABD	Е	K	Jk ^a	С	С	Fy ^a	е	Μ	S	Jkb	Fy ^b	S

Summary

antibody	n (%)	antibody	n (%)
anti-E	177 (37%)	anti-S	8 (2%)
anti-K	122 (26%)	anti-Jk ^b	7 (1%)
anti-Jk ^a	50 (11%)	anti-Fy ^b	5 (1%)
anti-c	37 (8%)	anti-e	4 (1%)
anti-Fy ^a	24 (5%)	anti-s	0
anti-C	22 (5%)		
anti-M	18 (4%)	All antibodies	474 (100%)

*	1	2	3	4	5	6	7	8	9	10	11	12	13
ABD	Е	K	Jk ^a	С	С	Fy ^a	е	М	S	Jk ^b	Fyb	S	k

Mathematical optimization for alloimmunization prevention

Thank you for your attention!

Questions?

Blood and Beyond

20 November, 2018 | 29